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Shock dynamics

Solar Energetic Particles

Sources

Accelerated by a variety of solar processes

Seed particles from the ambient solar wind

Transport a�ected by interplanetary magnetic �eld

Mostly protons, but also heavier ions

Observations

A major player in space weather

Energies up to hundreds of MeVs

Particles detected in-situ
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SEP
Shock dynamics

Acceleration at coronal shocks

1st order Fermi-acceleration

Plasma shock travels through corona

Ambient particles encounter shock, receive energy

Particles travel along magnetic �eld lines

Turbulence in front of shock scatters partices back towards the shock

repeated shock encounters lead to high energies
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SEP
Shock dynamics

Shock fronts

Dynamics

Strong shock velocities: 1000 . . . 2000 km/s

Spherical shocks can encounter �eld lines at varying angles

Calculate plasma and magnetic compression ratios

Align plasma �ow with magnetic �eld lines
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Rankine-Hugoniot equations

Solving shock compression ratios

Alfvénic Mach number M = u1/vA is known. Parametric solver of z �nds
gas compression ratio rk.

M
2 = (1+ z)rk(z)

rk(z) =
(z + 1)

(
z
2(γ + 1) cos2 θn + (1− γz) sin2 θn

)
− z

2γβ

(z + 1)(z2
(
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) (1)

Magnetic compression ratio rb solved with rk.

rb =

√
cos2 θn + (1− cos2 θn)

(
u2
1
− v2

A

u2
1
− rkv

2

A

rk

)2

(2)

Downstream �ow velocity given as u2 =
rb

rk

u1
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Particles encountered by the shock

Suprathermal and thermal populations

Thermal background solar wind

Suprathermal remnant populations

Can be modeled as isotropic or pancake pitch-angle distributions

Temperature pro�le + κ-distribution
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Shock encounter

Particle distribution transformation

Analyze how population encounters shock

Cross-shock potential and magnetic mirroring

Heavy turbulence in downstream scatters particles

Particles may re-enter upstream
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Vs = 1500 km s
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Simulation results

Maximum energy

θn = 0◦: 300 MeV

θn = 5◦: 6 MeV

4-fold di�erence in particles surviving initial shock encounter

What can possibly explain this?
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Analytical approach

Particles which cannot re-enter the upstream?

Attempt to solve speed thresholds for mirroring

Calculate downstream speed v2 for transmitted particle

Return impossible if v2 < u2

Find maxima for given particle pitch-angles and speeds

...let's not go there.
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What does this tell us?

Small angle θn can have large e�ect

Relatively low shock-normal angles result in high �ow factors

Cold population approaches the "no-�y zone"

Total number of particles falls

Bootstrapped acceleration process stalls
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Conclusions

Simulation results vindicated?

Reason behind intense θn-dependence found

Do completely parallel shocks exist?

What is the signi�cance of the shock thickness?

Wave populations in downstream & cross-helicity?
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Thank you!
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