Cen A - The Transition

Sarah Bird^{1,4}, Chris Flynn², Bill Harris³, and Mauri Valtonen¹

Tuorla Observatory, University of Turku, Finland

Finnish Centre for Astronomy with ESO, University of Turku, Finland

McMaster University, Hamilton, Ontario, Canada

E-mail: sarah.bird@utu.fi

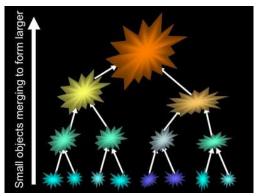
Tuesday June 5, 2012

Introduction	The Transition	Cen A	Preliminary Results	References
0000	0000000	0000000	000	

1 Introduction

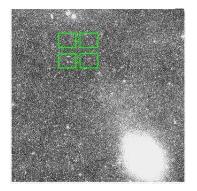
2 The Transition

Introduction	The Transition 0000000	Cen A 0000000	Preliminary Results 000	References
Contents				


2 The Transition

3 Cen A

Preliminary Results


Introduction	The Transition	Cen A	Preliminary Results	References
●○○○	0000000	0000000	000	

- Most metal-poor halo stars date back before hierarchical merging
- Image credit: Swinburne University of Technology

Introduction	The Transition	Cen A	Preliminary Results	References
0000	0000000	0000000	000	

- Today, these relic stars should be found in a sparse and extended "outermost-halo" component.
- Finding clear traces of this component in other giant galaxies, and deconvolving it from the more obvious and metal-rich spheroid component generated later by mergers, has been extraordinarily diffcult.
- Image: present work, outer halo of Cen A

Introduction
The Transition
Cen A
Preliminary Results
References

oc ●o
ocoooo
ocoooo
oco
ocoo
o

• Now, striking evidence discovered in M31 and NGC 3379 suggests that the metal-poor outermost halo can be isolated at very large radii, $R > 12R_{eff}$.

Figure: M31. credit: Adam Evans

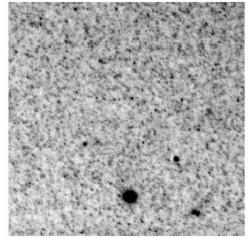
Figure: NGC 3379. credit: Kopernik Observatory

Introduction	The Transition	Cen A	Preliminary Results	References
○○○●	0000000	0000000	000	

- We have a new deep imaging study with VLT of the nearest giant elliptical and merger remnant, Centaurus A, to search for this extended remnant of the galaxy's earliest history
- Image credit: ESO

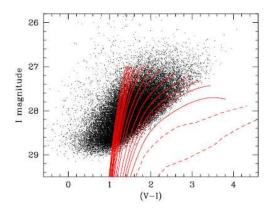
Introduction 0000	The Transition	Cen A 0000000	Preliminary Results 000	References
Contents				

- 2 The Transition
- 3 Cen A
- Preliminary Results


Introduction	The Transition	Cen A	Preliminary Results	References
0000	●○○○○○	0000000	000	

- What we are looking for is the transition from metal-rich stars to metal-poor stars around $12R_{eff}$
- *R_{eff}* is the radius within which half the light of the galaxy is located
- At the transition, the dominating metal-rich stars fall off and the metal-poor stars begin to dominate

Introduction	The Transition	Cen A	Preliminary Results	References
0000	○●○○○○○	0000000	000	


M87 [Bird et al., 2010]

- Very deep imaging
- Individual star photometry for galaxies outside the Local Group
- M87 is the furthest example at 16.7 Mpc using HST
- Only the brightest red giant stars can be measured

Introduction	The Transition	Cen A	Preliminary Results	References
0000	○○●○○○○	0000000	000	
M87 [Bird e	t al., 2010]			

- Over 33,000 stars
- Color of the tip of the red giant branch is sensitive to metallicity

Introduction	The Transition	Cen A	Preliminary Results	References
0000	○○○●○○○	0000000	000	

The transition from metal-rich stars to metal-poor stars has been found in M31 and NGC 3379 around $12R_{eff}$

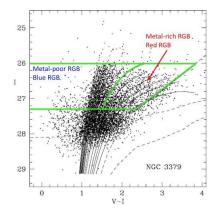
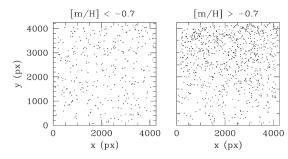


Figure: M31. credit: Adam Evans Figure: NGC 3379. credit: Kopernik Observatory

Introduction	The Transition	Cen A	Preliminary Results	References
0000	○○○○●○○	0000000	000	

Transition in NGC 3379 (Messier 105) [Harris et al., 2007]


- Color Magnitude Diagram with model red giant metallicity tracks superimposed
- Tracks are for ages of 12 Gyr
- Total metallicity grid extends from $\log(Z/Z_{\odot}) = -2.0$ to 0.4

Intr 00	The Transition ○○○○○●○	Cen A 0000000	Preliminary Results 000	References

Transition in NGC 3379 (Messier 105) [Harris et al., 2007]

- Positions of the bright stars in the magnitude range 26.0 < *I* < 27.3
- Center of NGC 3379 is off the diagram at the top
- Left panel shows metal-poor RGB stars ([m/H] < -0.7)
- Right panel shows metal-richer giants ([m/H] > -0.7)
- The metal-rich population exhibits a much stronger gradient in number density across the frame

Introduction	The Transition	Cen A	Preliminary Results	References
0000	○○○○○●	0000000	000	

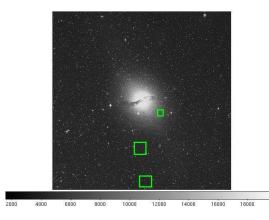
- The transition from metal-rich stars to metal-poor stars has been found in M31 and NGC 3379 around $12R_{eff}$
- Can the transition be found in other galaxies?

Figure: M31. credit: Adam Evans Figure: NGC 3379. credit: Kopernik Observatory

Introduction 0000	The Transition 0000000	Cen A 0000000	Preliminary Results 000	References
Contents				

1 Introduction

2 The Transition



Introduction	The Transition	Cen A	Preliminary Results	References
0000	0000000	●000000	000	

Cen A Observations

- Elliptical galaxy with many mergers history
- Radius at half light of Cen A: $R_{eff} = 5.5 \text{ kpc} = 4.7'$
- Distance to NGC 5128: 3.8 ± 0.1 Mpc [Harris et al., 2010]
- Brightness of the tip of the red giant branch: $M_I^{TRGB} = -4.05 \pm 0.10$
- Previous studies marked with green boxes ([Harris and Harris, 2002], [Harris et al., 1999], [Harris and Harris, 2000])

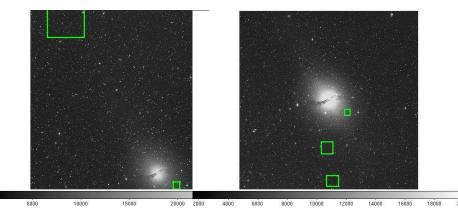
Introduction	The Transition	Cen A	Preliminary Results	References
0000	0000000	○●○○○○○	000	

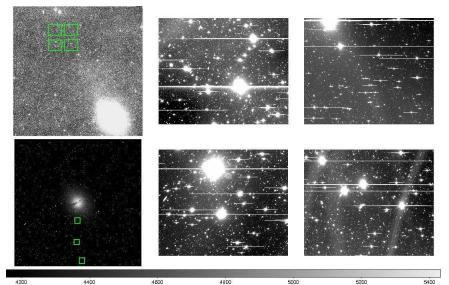
Cen A Observations

- Telescope: ESO VLT-UT3 Melipal, 8.2m diameter mirror, located in Chile on Cerro Paranal
- Instrument: VIMOS
- Filters: V and I
- Observing periods: 83 and 87
- Detector changed between periods
- 14 exposures: 4x705sec or 47min in I, 9x965+88sec or 2.4h in V
- 4 CCD chips, thus $4 \times 14 = 56$ frames

Introduction	The Transition	Cen A	Preliminary Results	References
0000	0000000	○○●○○○○	000	

Cen A Observations




Figure: 65 and 8 kpc fields

ò

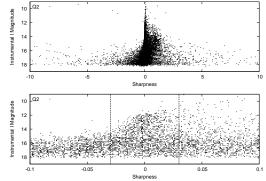
Figure: 8, 21, and 31 kpc fields

Introduction	The Transition	Cen A	Preliminary Results	References
0000	000000	○○○●○○○	000	

Cen A

Introduction 0000	The Transition 000000	Cen A ○○○○●○○	Preliminary Results 000	References
Cen A Obs	servations			

- Distance to Observation Field: $12R_{eff} = 65$ kpc= 3000" from the center of NGC5128
- The four panels on the right show the four CCD quadrants of our field NGC5128-F1. Each quadrant is 7' × 8' with 2' gaps.
- Top left panel shows the location of the four quadrants (green boxes) relative to the center of Cen A (the image is 70' × 70')
- Lower left panel shows Cen A (also 70' × 70') along with three green boxes marking three previous studies in fields at 8, 21, and 31 kpc from the center of the galaxy ([Harris and Harris, 2002], [Harris et al., 1999], [Harris and Harris, 2000])


Introduction 0000	The Transition	Cen A ○○○○○●○	Preliminary Results 000	References

Photometry using Cen A Observations

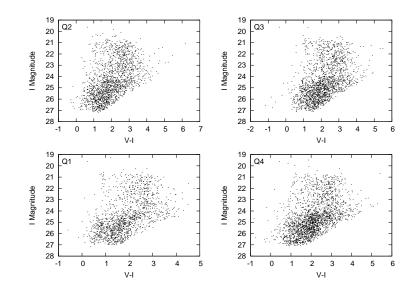
- Combine individual exposures to make one V and one I image
 - Align stars
 - Use IRAF to combine the images
- Calculate zeropoints
 - Over 1000 standard stars from ESO
 - Achieve accuracy of ± 0.03 in I and ± 0.02 in V

Introduction 0000	The Transition 000000	Cen A ○○○○○○●	Preliminary Results 000	References
Cen A Ol	oservations			

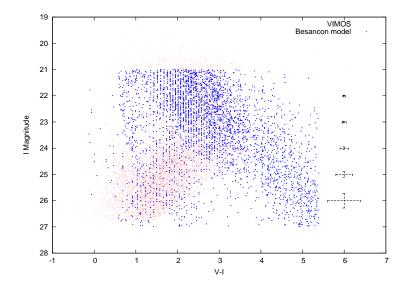
- Define sharpness values to find stars
- Over 7000 stars found in the field

Introduction 0000	The Transition	Cen A 0000000	Preliminary Results	References
0				
Contents				

1 Introduction


2 The Transition

3 Cen A


The Transition	Cen A	Preliminary Results	References
		000	

Cen A Color Magnitude Diagrams

The Transition	Cen A	Preliminary Results	References
		000	

Model Field Stars and VIMOS Data

Introduction	The Transition	Cen A	Preliminary Results	References
0000	0000000	0000000	○○●	

Thanks!

Summary and Future Work:

- Understand effects of galaxy and field star contamination
- Use isochrones to determine metallicity of stars
- Search Cen A for the transition between metal-rich and metal-poor stars around 12R_{eff} which has already been found in M31 and NGC 3379

email: sarah.bird@utu.fi

Figure: The cliffhanger

Introduction 0000	The Transition 0000000	Cen A 0000000	Preliminary Results 000	References
S. Bird, W. A71, 201		lakeslee, and	C. Flynn. <i>A</i> & <i>A</i> , 524:	
G. L. H. H.	arris and W. E. Ha	rris. <i>AJ</i> , 120:	2423–2436, Nov. 200	0.
G. L. H. Ha Feb. 199		and G. B. Po	oole. <i>AJ</i> , 117:855–86	7,
G. L. H. Ha Oct. 201	, ,	and W. E. Ha	rris. <i>PASA</i> , 27:457–4	62,
W. E. Harr	is and G. L. H. Ha	rris. <i>AJ</i> , 123:	3108–3123, June 200	2.
	is, G. L. H. Harris, 9:903–918, Sept. 20	2	n, and E. M. H. Wehr	ier.