Height-resolved energy exchange rates in the ionosphere

Lei Cai, Anita Aikio, Tuomo Nygren, and Ritva Kuula <u>lei.cai@oulu.fi</u> Department of Physics University of Oulu

Methods

Energy Transfer Rate Profile

Methods

Energy Transfer Rate Profile

Energy Input from the Sun

- Solar radiation
 - Soft X-ray, EUV, UV

Energy Input from the Sun

- Solar radiation
 - Soft X-ray, EUV, UV
- Energetic particles precipittaion

 CME, SEP

Energy Input from the Sun

- Solar radiation
- Energetic part precipittaion

Electromagnetic energy injection

Magnetospheric convection during southward IMF

UNIVERSIT

Yof

Electromagnetic (EM) Energy Mapping

$$s_i E_i = s_m E_m$$

Plasma convection in the northern high latitude ionosphere and associated convection electric elds.

Dipole Field-Atigned Current Model of Substorm Expansion

EM Energy Injection in Auroral Oval

UNIVERSITY of OULU

Energy Exchange in the lonosphere

Poynting's theorem

Energy exchange

Electromagnetic (EM) energy exchange under steady state

Methods

Energy Transfer Rate Profile

EISCAT Incoherent Scatter Radar

The mechanism of Thomson scattering in terms of dipole radiation of an oscillating electron.

EISCAT Incoherent Scatter Radar

The mechanism of Thomson scattering in terms of dipole radiation of an oscillating electron.

Arecibo: 300 m. Too large plate.

EISCAT Scientific Association

The mechanism of Thomson scattering in terms of dipole radiation of an oscillating electron.

Arecibo: 300 m. Too large plate.

Smaller one. Three radar systems in Northern Scandinavia.

EISCAT CP2 experiments inTromsø

Four beam directions.

- 25-day data from September 6 to September 30 in 2005.
- 9-day data from November 11 to November 19 in 2003.
- The data in 2003 is supplemented for active conditions.

What are calculated? $\begin{cases} q_E = \sigma_P \cdot \mathbf{E}^2 \\ q_J = \mathbf{j} \cdot (\mathbf{E} + \mathbf{u} \times \mathbf{B}) \\ q_m = \mathbf{u} \cdot (\mathbf{j} \times \mathbf{B}) \\ q_{EM} = q_J + q_m \end{cases}$

Goals

- To study the height-resolved energy exchange rate, Joule heating rate, and mechanical energy rate in the E region.
- To illuminate the geomagnetic activity and MLT dependences of the altitude profile for each energy rate through a statistical study.
 - To understand how the neutral wind affects the dissipation of electromagnetic energy input from the magnetosphere.

Methods

Energy Transfer Rate Profile

- > During the studied daytime, EM energy input/output is very small.
 - Winds are making work, which is dissipated as Joule heating.

- Strong EM energy input from the magnetosphere
- > Winds make work at highest altitudes, but are a loader in E region ($q_m > 0$);
- Mostly, both EM energy input and neutral winds contribute to Joule heating;

Statistical Study

Low activity

- Neutral wind is the main source of heightintegrated Joule heating in all MLT sectors.
- Neutral wind is the main source of Joule heating above 125 km.
- □ Strongest enhancements of EM energy input and Joule heating rate are in the midnight sector. The peak height of q_J is about 145 km, and that of q_{EM} is bout 120 km.
- The dissipation of EM energy takes place between 100 km and 140 km.

Statistical Study

Median activity

- In the evening and midnight sectors, EM energy dissipation is the main source of height-integrated Joule heating.
 - In the evening and midnight sectors, EM energy goes also to neutral wind at altitudes between about 110 and 130 km.
 - Neutral wind is the main source of Joule heating above ~ 150 km in the evening sector, and above ~ 130 km at other MLT sectors.
 - Maximum q_J and q_{EM} take place in the midnight sector.

Statistical Study

High activity

- EM energy dissipation is the main source of height-integrated Joule heating in all other MLT sectors except the morning sector.
- Some EM energy goes to neutral winds at all MLT sectors, but the strongest transfer takes place in the evening sector between 110-140 km altitude.
- Maximum q_J and q_{EM} take place in the evening sector

Y of OULU OULUN YLIOPISTO

UNIVERSIT

Background

Methods

Energy Transfer Rate Profile

- Neutral winds are the main source of Joule heating under quiet conditions, while EM energy dissipation dominates on Joule heating under active conditions.
- Neutral winds affect the altitude distribution of Joule heating especially at high altitudes.
- EM energy dissipation enhances with increasing geomagnetic activity. The maxima takes place at 120 km.
 - Mainly, EM energy dissipates on Joule heating. However, some EM energy goes to neutral winds at the altitudes between about 115 and 140 km under active conditions.

Thank you!

