Introduction
Data
Analysis
Results
HARPS
Summary

Occoor
Occoor</t

Juliet Datson¹, Chris Flynn^{2,3,4} and Laura Portinari¹

¹Tuorla Observatory, University of Turku, Finland,

²Department of Physics and Astronomy, University of Sydney, NSW 2006 Australia

³Finnish Centre for Astronomy with ESO, University of Turku, FI-21500, Piikkio, Finland

⁴Centre for Astrophysics and Supercomputing, Swinburne University of Technology, VIC 3122 Australia

Astronomer's Days 2012 Haikon Kartano, Porvoo, 6th June 2012

Introduction	Data 00000	Analysis 00000	Results 000	HARPS 0000	Summary 000
Contents					

2 Data

Introduction ●○○○	Data 00000	Analysis 00000	Results 000	HARPS 0000	Summary 000
The GCS					
GCS					

- Geneva-Copenhagen-Survey catalogue (GCS)
- Strömgren colours, absolute magnitudes, metallicities and temperature estimates for 14,000 nearby F to K type stars
- makes it the largest, homogeneous sample of the properties of nearby stars
- apparent magnitude limited selection
- volume limited for F and G stars out to 40pc

Introduction ○●○○	Data 00000	Analysis 00000	Results 000	HARPS 0000	Summary 000
Solar analogues					
Solar anal	OTHES				

- colour
 - 0.371 < b y < 0.435
- absolute magnitude $4.63 < M_V < 5.03$
- GCS I (dots in this window), with (-0.15 < [Fe/H] < 0.15), together with our initial twin candidates (circles) and the candidates from Soubiran and Triaud (diamonds).

Introduction	Data 00000	Analysis 00000	Results 000	HARPS 0000	Summary 000
Solar analogues					
Solar ana	logues II				

- two revisions of the GCS
- stars moved in and out of the original box
- found some of the new targets from FEROS archive
- included also some targets from other searches, which we could find from the archive

Introduction ○○○●	Data 00000	Analysis 00000	Results 000	HARPS 0000	Summary 000
Why?					
Why chec	k catalogi	ie scales?			

- age of large surveys
- difficult to get reliable parameters, when there is so much data
- be able to trust catalogues
- catalogues should make work easier, not more difficult

Introduction 0000	Data 00000	Analysis 00000	Results 000	HARPS 0000	Summary 000
Contents					

Introduction 0000	Data ●0000	Analysis 00000	Results 000	HARPS 0000	Summary 000
Data acquisition					
Telescope					

Introduction 0000	Data 0●000	Analysis 00000	Results 000	HARPS 0000	Summary 000
Data acquisition					
Telescope	and instr	ument			

- used 2.2m Max Planck Telescope in La Silla, Chile
- FEROS data from June to August 2006
- Fiber-fed Extended Range Optical Spectrograph
- over 70 candidates with a wavelength coverage of 3500-9200Å in 39 orders
- resolution of R=48000
- asteroid Ceres spectrum for comparison to the Sun
- need to compare to something, so see if the values are off or not
- added another 70 spectra from the ESO archive, also FEROS spectra
- typical S/N ${\sim}100{\text{-}}150$

Introduction 0000	Data 00●00	Analysis 00000	Results 000	HARPS 0000	Summary 000
Data acquisition					
FFROS					

Introduction 0000	Data ○○○●○	Analysis 00000	Results 000	HARPS 0000	Summary 000
Data reduction					
Reduction	n and anal	vsis tools			

- FEROS pipeline
- additional normalizing needed, as the resulting spectra are very wiggly
- developed our own program to determine equivalent widths and line depths of selected lines - TWOSPEC
- comparison of two spectra
- used 109 weak, unblended spectral lines without telluric contamination of 19 different elements
- cover 5000-8000Å

Introduction 0000	Data ○○○○●	Analysis 00000	Results 000	HARPS 0000	Summary 000
Data reduction					
Spectral li	nes				

Introduction 0000	Data 00000	Analysis 00000	Results 000	HARPS 0000	Summary 000
Contents					
1 Introduc	tion				

2 Data

Introduction 0000	Data 00000	Analysis ●0000	Results 000	HARPS 0000	Summary 000
Analysed quantities					
Analysed qu	antities				

- which information to take from the spectra to analyse?
- $\Delta EW_{all} = (EW(\star) EW(\odot))/EW(\odot)$
- $\Delta \text{EW}_{\text{FeI}} = (\text{EW}_{\text{FeI}}(\star) \text{EW}_{\text{FeI}}(\odot))/\text{EW}_{\text{FeI}}(\odot)$
- slope of the relation between ΔEW_{FeI} and the excitation potential (χ_{exc}) of each Fe I line
- $\Delta LD_{FeI} = (LD_{FeI}(\star) LD_{FeI}(\odot))/LD_{FeI}(\odot)$
- slope of the relation between ΔLD_{FeI} and the excitation potential (χ_{exc}) of each Fe I line
- for temperature determination only: line depth ratios $\Delta LDR = (LDR(\star) LDR(\odot))/LDR(\odot)$

Introduction 0000	Data 00000	Analysis ○●○○○	Results 000	HARPS 0000	Summary 000
Analysed quantities					
Slopes					

Introduction	Data	Analysis	Results	HARPS	Summary
0000	00000	○○●○○	000	0000	000
Temperature and metallicit	y				

Temperature and metallicity scales

• $\Delta EW_{all} = 1.056 \times [Fe/H] - 3.646 \frac{T_{eff} - 5500}{5500} + 0.250$ • $[Fe/H]_{EW_{all}} = 3.451 \frac{T_{eff} - 5500}{5500} - 0.237$

Introduction 0000	Data 00000	Analysis ○○○●○	Results 000	HARPS 0000	Summary 000				
Temperature and metallicity									
Temperature	Temperature and metallicity scales								

- determine all these dependancies for the mean ΔEW and slope of ΔEW versus excitation potential
- ideal solar twin has all mean ΔEWs and slopes=0
- give the temperature and metallicity of an ideal solar twin in the GCS

Introduction	Data	Analysis	Results	HARPS	Summary		
0000	00000	○○○○●	000	0000	000		
Temperature and metallicity							

Temperature and metallicity scales

Introduction 0000	Data 00000	Analysis 00000	Results	HARPS 0000	Summary 000
Contents					

2 Data

Introduction 0000	Data 00000	Analysis 00000	Results ●00	HARPS 0000	Summary 000				
Temperature and metallicity scales									
Temperat	ure and m	etallicity c	offsets						

- $T_{\rm eff} = 5680 \pm 40 {\rm K} \ (T_{\rm eff,\odot} = 5777)$
- $[Fe/H] = -0.12 \pm 0.02 dex ([Fe/H]_{\odot} = 0)$
- yields offsets in the GCS of:
- $\Delta T_{\mathrm{eff}} =$ 97K and $\Delta [\mathrm{F} e/H] =$ 0.12dex
- large offset
- will change other results of the survey, it will change ages, chemical composition, etc.
- see also Casagrande et al. 2010 for similar results: offsets of about 100K and 0.1dex.

Introduction	Data 00000	Analysis	Results 0●0	HARPS	Summary
Temperature and m	etallicity scales				
Solar colo	ours				

Introduction 0000	Data 00000	Analysis 00000	Results 00●	HARPS 0000	Summary 000		
Temperature and metallicity scales							
Solar colours	S						

- same approach to determine the solar b-y colour
- no direct method possible to measure it
- started out with b-y=0.403 (Holmberg et al. 2004)
- \bullet using degeneracy lines, we now find b–y=0.414 \pm 0.007
- $\bullet\,$ Casagrande et al. 2010 find b–y=0.409 $\pm\,$ 0.010 and Meléndez et al. 2010 find b–y=0.411 $\pm\,$ 0.002
- our value seems very red, but within the errors of last years' estimates

Introduction	Data	Analysis	Results	HARPS	Summary
0000	00000	00000	000	0000	000

Contents

1 Introduction

2 Data

3 Analysis

Introduction 0000	Data 00000	Analysis 00000	Results 000	HARPS ●000	Summary 000
HARPS					
What is HA	RPS?				

- fibre-fed, high-resolution spectrograph on the 3.6m telescope, also on La Silla, Chile
- High Accuracy Radial velocity Planet Searcher
- R~115000
- spectral range is 3780-6910Å
- nowadays the 3.6m telescope is dedicated to HARPS
- used spectra of 174 stars from the HARPS archive, same constraints as the FEROS sample
- different line list, 300 lines

Introduction 0000	Data 00000	Analysis 00000	Results 000	HARPS o●oo	Summary 000
HARPS					

Introduction 0000	Data 00000	Analysis 00000	Results 000	HARPS 00●0	Summary 000
HARPS					
Results					

Introduction 0000	Data 00000	Analysis 00000	Results 000	HARPS 000●	Summary 000
HARPS					
Results II					

- $T_{\rm eff} = 5697 \pm 25 {\rm K} \ (T_{\rm eff,\odot} = 5777)$
- $[Fe/H] = -0.12 \pm 0.02 dex ([Fe/H]_{\odot} = 0)$
- yields offsets in the GCS of:
- $\Delta T_{\mathrm{eff}} = 80\mathrm{K}$ and $\Delta [\mathrm{F}e/H] = 0.12\mathrm{dex}$

Introduction 0000	Data 00000	Analysis 00000	Results 000	HARPS 0000	Summary
Contents					

1 Introduction

2 Data

3 Analysis

4 Results

Introduction 0000	Data 00000	Analysis 00000	Results 000	HARPS 0000	Summary ●○○
Summary					
To take hor	ne				

- checking catalogue scales is important, there might be offsets
- GCS temperature and metallicity scales seem to be offset by about -100K and -0.1dex, maybe even the solar b-y colour
- see also Datson et al. 2012 (submitted)
- using data from different telescopes allows to make sure that the offsets are real

Introduction 0000	Data 00000	Analysis 00000	Results 000	HARPS 0000	Summary ○●○
Future					
Future					

- use even more data from more telescopes to confirm (ESO proposal???)
- check other catalogues

Introduction 0000	Data 00000	Analysis 00000	Results 000	HARPS 0000	Summary ○○●
Future					
Thank you!					

Thank you very much for your attention!