Modelling the X-ray spectra of black hole binaries: The black hole spin controversy

Mari Kolehmainen & Chris Done, Durham University Maria Diaz Trigo, ESO

Astronomers' Days Porvoo, Finland 4 – 6 June, 2012

Time-averaged energy spectrum

- Thermal emission at low energies → Accretion disc
- Comptonised emission at high energies → Corona
- Secondary processes → Reflection

Black hole spin

- Specific angular momentum
 - □ a_{*} : 0 0.998

 $R_{in}: 6 - 1.24 R_g$

- Currently 2 ways to determine
 - Disc continuum fitting
 - Fe line profile

Black hole spin: disc fitting

Black hole spin: disc fitting

Black hole spin: disc fitting

Black hole spin: Fe-line profile

 $7\|$

Black hole spin: Fe-line profile

Comparing spin measurements: High mass accretion rate spectra

- Disc continuum fitting
 - disc dominated spectra
 - classical high/soft state
- Fe line profile
 - strong hard X-ray tail
 - very high/soft intermediate states

Comparing spin measurements: GX 339-4

Previously derived an upper limit for the spin using continuum fitting of disc dominated RXTE spectra (Kolehmainen & Done, 2010)

- $a_{*} < 0.9$ for any reasonable mass ($<\!15 M_{\odot}$), distance ($>\!6$ kpc) and inclination (i $>45^{\circ}$)

Also widely studied in terms of Fe-line

 XMM-Newton burst mode spectrum gave a_{*}≈ 0.94 (e.g. Miller et al. 2004; Reis et al. 2008)

Durham University

High mass accretion rate spectra of GX 339-4

- Joint EPIC-pn/RXTE observations (0.7-25 keV)
- Fast timing mode data, not piled up!
- 3 disc dominated states
- 2 soft intermediate states (SIMS)

Modelling the high mass accretion rate spectra: Disc dominated state

- DISKBB
 - simplest multi-colour disc blackbody
- KERRBB
 - stress-free inner boundary condition, colour- temperature correction and relativistic smearing
- BHSPEC
 - calculates radiative transfer through each disc annuli
 - includes all relativistic corrections
 - assumes R_{in}=R_{ISCO}

Modelling the high mass accretion rate spectra: Disc dominated state

- DISKBB
 - simplest multi-colour disc blackbody
- KERRBB
 - stress-free inner boundary condition, colour- temperature correction and relativistic smearing
- BHSPEC
 - calculates radiative transfer through each disc annuli
 - includes all relativistic corrections
 - assumes R_{in}=R_{ISCO}

Modelling the high mass accretion rate spectra: Disc dominated state

- DISKBB
 - simplest multi-colour disc blackbody
- KERRBB
 - stress-free inner boundary condition, colour- temperature correction and relativistic smearing
- BHSPEC
 - calculates radiative transfer through each disc annuli
 - includes all relativistic corrections
 - assumes R_{in}=R_{ISCO}

Modelling the high mass accretion rate spectra

- Disc model
 - use this as seed photons for Comptonisation to make X-ray tail (convolved with Simpl (Steiner et al. 2009))
- Reflection of Comptonised continuum using ionised reflection models of Ross & Fabian
- Relativistic smearing (kdblur)

- BHSPEC+reflected continuum
 - very steep continuum to make disc broader
 - high reflection fraction
 - misses high energiesresiduals around 1 keV

- BHSPEC+reflected continuum
 - very steep continuum to make disc broader
 - high reflection fraction
 - misses high energiesresiduals around 1 keV

- (diskbb+compTT)
 +reflected continuum
 - reasonable reflection fraction+continuum
 - extrapolates to high energies
 - fit for different mass accretion rates

- (diskbb+compTT)
 +reflected continuum
 - reasonable reflection fraction+continuum
 - extrapolates to high energies
 - fit for different mass accretion rates

DATA vs. BHSPEC

Controversy: Spin values in disagreement

GX 339-4:

- a_{*} < 0.9 from disc fitting (Kolehmainen & Done 2010)
- a_{*}= 0.935±0.01 from iron line (Miller et al. 2004; Reis et al. 2008)

Miller et al. 2004

diskbb+po

- disc, power law tail
- continuum modelled by ignoring 4-7 keV

diskbb+podisc, power law tail

 continuum modelled by ignoring 4-7 keV

→ Residuals show a broad iron line with $R_{in} \approx 1.6 R_g$

Kolehmainen et al. 2011

- (diskbb+compTT)+reflected continuum
- convolved disc+thermal Comptonisation, ionised smeared reflection

- (diskbb+compTT)+reflected continuum
- convolved disc+thermal Comptonisation, ionised smeared reflection

University

Kolehmainen et al. 2011

Conclusions

• Real disc spectra seem broader than diskbb or even BHSPEC

 $\mathbf{26}$

• Changing the continuum model changes the shape of the iron line (and the black hole spin)

Comparing spin measurements: GX 339-4

- Disc fitting gives upper limit
 - a_{*} < 0.9 from RXTE spectra (Kolehmainen & Done 2010)
- Fe line values higher
 - $a_* \approx 0.94$ from XMM-Newton Burst mode soft intermediate state (Miller et al. 2004)
 - $a_* \approx 0.89$ from Suzaku intermediate state
 - (Miller et al. 2008 vs. Yamada et al. 2009)
 - a_{*} ≈ 0.94 from XMM-Newton LHS (Reis et al. 2008 vs. Done & Diaz Trigo 2010)

Continuum fitting below 3 keV: LMC X-3

DATA vs. BHSPEC

Continuum fitting below 3 keV: Disc dominated state

- DISKBB
 - simplest multi-colour disc blackbody
- KERRBB
 - stress-free inner boundary condition, relativistic smearing and the colour- temperature correction
- BHSPEC
 - calculates radiative transfer through each disc annuli
 - includes all the relativistic corrections
 - assumes R_{in}=R_{ISCO}

Continuum fitting below 3 keV: Disc dominated state

DATA vs. BHSPEC Kerrbb

 \mathbf{x}

Durham University

Black hole binaries

