Transit of Venus

Joni Tammi Aalto University Metsähovi Radio Observatory

Transit of Venus

z = 0, Γ= 1, why would anyone care?

Transit of Venus

- Background
- (Brief) History
- Tonight's science
- Viewing event

Basics

Basics of transit

8, 105.5,
 8, 121.5,
 8, 105.5,
 8, 121.5,
 8, 105.5,
 8, 105.5,
 8, 105.5,
 8, 121.5, ...

Basics of transit

- Planet between $\oplus \& \odot$
- The three bodies have to be in line ...
 - east-west: inferior conjuction
 - north-south: close to a node

Basics of transit

- Planet between $\oplus \& \odot$
- The three bodies have to be in line ...
 - east-west: inferior conjuction
 - north-south: close to a node

- I.e. V needs to be a node during a conjunction.
- 8, 105.5, 8, 121.5, 8, 105.5, 8, 121.5, ...

Inferior conjunctions near a node:

2004: Venus at the node	~ 12 h late	\rightarrow	transit
2012:	~ 10 h early	\rightarrow	transit
2020:	~ 2 days early	\rightarrow	no transit

History

Developing tools & concepts

- 1631 & 1639: Theoretical prediction, Telescope
- 1761 & 1769: Pendulum clock
- 1874 & 1882: Photography, Spectroscopy
- 2004 & 2012: Internet, Satellites, Exoplanets
- 2117 & 2125: ?

(*Previously, in astronomy*: Copernicus, Brahe; *currently hot*: Kepler, Galilei, et al.; → **scientific revolution**)

- 1631: Kepler predicted the transit, but wasn't observed.
- 1639: Horrocks reworked Kepler's data and found an oncoming transit (in a month!).

Observed for the first time (ever).

- 1631: Kepler predicted the transit.
- 1639: Horrocks's first observation.
- Late 1600s, early 1700s: Transit can be used to determine distances to Venus and Sun, if observed from different places

Image taken from an American popular science article...

 \rightarrow national expeditions to remote places for the next transits. Determining the parallax "with near-perfect accuracy."

ONE DOES NOT SIMPLY

MEASURE THE PARALLAX WITH NEAR-PERFECT ACCURACY

- 1631: Kepler predicted the transit.
- 1639: Horrocks's first observation.
- 1761 & 1769: Expeditions sent to "the ends of the Earth"
 - Disappointments: The Black Drop distorted exact timing

- 1631: Kepler predicted the transit.
- 1639: Horrocks's first observation.
- 1761 & 1769: Expeditions sent to "the ends of the Earth"
 - Disappointments: The Black Drop distorted exact timing
 - Nevertheless: Scale of the Solar system narrowed down: 1 AU = 153 Gm (2.3 % error)
 - Lomonosov (1761): halo around Venus's disk
 → other planets with atmospheres

- 1631: Kepler predicted the transit.
- 1639: Horrocks's first observation.
- 1761 & 1769: Expeditions
 - 1 AU = 153 Gm
 - Atmosphere of Venus
- 1874 & 1882: Improved optics, photography
 - 1 AU = 149,33 Gm (0.18 % error)

- 1631: Kepler predicted the transit.
- 1639: Horrocks's first observation.
- 1761 & 1769: Expeditions sent to "the ends of the Earth"
 - 1 AU = 153 Gm
 - Atmosphere of Venus
- 1874 & 1882: First photographs
 - 1 AU = 149.33 Gm (0.18 % error)
- 2004: Internet, Satellites, knowledg of exoplanets
 - E.g. VT-2004; 2763 participants (including ~1000 schools, 149.609 Gm, 0.007 %)

2012 transit

Examples

Themes of the 2000s

Simultanous observations of Venus from the Earth and from space.

Venus as an Earth-sized planet near the Habitable Zone passing in front of a Sun-like star.

Venus research: Aureole

- Thin arc of light, refracted light through Venus's atmosphere
- First observed in 1761, first photographed in 2004
- Brightness and shape depend on Venus's atmospheric properties
- Help determining whether the atmospheric phenomena detected by Venus Express (orbiting since 2006) are linked to variations in time or in latitude

Extrasolar planet research

- Surrogate to test observing methods and strategies, validate concepts, etc.
- Detection limits of different gases in the atmosphere
- Compare the predictions of atmospheric models (based on probe data) to the real event
- If Venus were an extrasolar planet, what known-toexist features would we miss or misinterpret based on our observations?

Tonight

- Direct and indirect spectroscopic observations of the atmosphere
- Joint Earth- and space-based observations of the atmosphere (focus on the complex middle layer)
- School class projects, smartphone apps, amateur viewing events, etc.
- Last chance to see it

Hubble uses Moon as a mirror to observe Venus transit

Our event

- 07:00–08:00 near the saunas
- Dobson + eclipse glasses
- Trying to time the last two contact points

• Probably some media people around...

