Hot accretion flow in X-ray binaries: spectral and timing evidence

Alexandra Veledina Juri Poutanen Indrek Vurm

University of Oulu

Outline

- Black hole spectra: radio to X-rays
- Optical/X-ray variability
- Spectral and timing modelling

OBSERVATIONS

X-ray spectra and geometry

Hard state - standard cold outer disk + hot inner flow? Soft state - standard accretion α -disk, plus corona?

Zdziarski & Gierlinski, 2004

Broadband spectra of LMXBs

Broadband spectra of LMXBs

XTE J1118+480

Chaty et al. 2003

Optical/X-ray cross-correlation

Observational aspects

 <u>Spectrum</u>: optical/infrared spectrum is inconsistent with being produced by standard accretion disc or the jet

• <u>Timing</u>: mysterious shape of the crosscorrelation function

MODELING

Thermal Comptonization in the hard state

A weak non-thermal tail is present

Synchrotron in hybrid plasma

Hybrid electrons, 1% energy in the non-thermal component

Hybrid electrons, 0.01% energy in the non-thermal component

Thermal electrons, 100 keV

Synchrotron can be the main source of seed photons for Comptonization

Synchrotron Self-Compton mechanism in hybrid plasma

$$R \propto \dot{m}^{-4/3}$$
 (Rozanska &
Czerny 2000)
 $L \propto \dot{m}$
 $\tau \propto \dot{m}$
 $B = const$

The optical and the X-rays are anticorrelated

Irradiated discs

Gierlinski et al. 2009

Optical/X-ray cross-correlation

Comparison with the data

Data from Durant et al. 2010

Multi-zone hot accretion flow

<u>Hot inner flow</u> can be divided into a number of zones. More compact zones have higher self-absorption frequency. The resulting OIR spectrum is flat

 $F_{\nu} \propto v^{0}$

Inhomogeneous synchrotron source $\log EF_{E}$ $V_t \propto B^{(p+2)/(p+4)} \tau^{2/(p+4)}$ V t 10³⁶ EL_Eergs¹ 10³⁵ - p τ \propto 10³⁴ 10⁻² 10⁴ 10-4 10⁰ 10² E(keV)

Broadband spectrum and multi-zone hot accretion flow

Conclusions

- The mysterious shape of the optical/X-ray CCF is explained by joint contribution of the <u>synchrotron +</u> <u>irradiated disc emission</u>
- Flat optical/infrared spectra can be explained in terms of <u>inhomogeneous SSC model</u>

• Question regarding the importance of the jet at these wavelengths remains to be studied